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ON A SELFSIMILAR SOLUTION OF THE 
OF A TOFOCHEMICAL REACTION 

FROBLEtl OF NON-LINEAR DIFFUSION KINETICS 
WITH A SURFACE OF VARYING ACTIVITY* 

D.A. KAZENIN and G.A. FASTYKOVSKII 

In the framework of the one-dimensional model, the macrokinetics of growth 
of the solid product layer formed in the course of exo- or endothermic 
topochemical reactions at the boundary separating the solid and mobile 
reagents occupying half-spaces are studied. The mobile reagent (gas or 

liquid), the temperature and concentration of which are assumed constant, 
diffuses through this layer to the reaction front propagating into the 
bulk of the solid reagent. The concentration and temperature fields are 
connected at the reaction front by an arbitrary non-linear law of micro- 
kinetics. The aging or poisoning of the reaction SUrfaCe affects its 
activity with time /l-3/. Assuming that the activity varies according 
to the "inverse root" law, we obtain the selfsimilar solution of the 
problem, which can be used to determine the corrosion resistance of 
materials and to analyse the microkinetics of growth of a polymer layer 
on an activated filler when filled polymers are prepared by gas phase 
polymerization. 

The phenomenological picture of the development of a topo- 
0 chemical reaction between a gas or liquid and a solid, localised 

CW,7~~,~) 

q 

on the boundary separating the solid reagent or catalyst from 
the solid reaction products, is governed strictly by the reaction 

__ _- ----- kinetics as well as by diffusion of the mobile reagent through 

,,,,, I,, I/, I,, 
the growing layer of solid reaction product /l/. The picture 

T, (0) may be complicated by the influence of the heat transfer processes 

3 in the phases in contact when the thermal effect of the reaction 
becomes apparent, and by the variation with time of the activity 
of the solid reagent (aging) or poisoning of the catalyst /2, 3/. 

The figure shows schematically the positions of the regions at t# 0. The region 1<0 
is occupied by the mobile reagent. The high effective transport coefficients of -this reagent 
ensure that the values of temperature and concentration are kept constant at the boundary I= 
0. Of most interest is the transport in the region 0<~<6((f) occupied by the solid reaction 
product, heat conducting and diffusively permeable by the mobile reagent. The heat and mass 
exchange between the reaction surface z = 6(t) and the surface of the mobile reagent a=0 
takes place across this layer. The dashed line depicts, for the value of the coordinate t= 
6 (1) - 6, (f) , the initial position of the boundary surface separating the solid and mobile re- 

agent. The reagents come into direct contact at the instant t= (1 when the reaction products 
layer has zero thickness, i.e. 6(0)=0. The layer of the consumed solid reagent 6,(f) will 
also have zero thickness 6,(O) = 0 at the initial instant. In subsequent states the layer of 
solid product will "wedge" itself between the reagents, filling the region vacated by the 
consumed solid reagent, anddisplacing at the same time, in the opposite direction, the bulk 
of the mobile reagent. All this shows that strictly speaking the reference system in question 
is not inertial. However, since the rates of layer growth achieved in practice are quite low, 
we shall neglect the related transport and dynamic effects. 

It should be noted that the bulk of solid reagent is not permeable by the mobile reagent. 
In this connection the heat between the solid and mobile reagent takes place at the reaction 
surface r= b(f) because of the initial temperature and heat emission (absorption) differences. 

Assuming that the catalyst surface is uniformly accessible, we shall formulate the problem 
in question mathematically, using a reference system attached to the mobile phase - solid 
reaction products boundary as follows: 

oc 3% 
d(=D- dz= ’ I>,09 0 < * < 6 (2); b (0) = 0 (1) 
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Here c is the dimensionless concentration of the mobile reagent in the solid reaction 
product, T is the temperature, D is the coefficient of diffusion of the mobile reagent in the 
solid product, r is specific heat of reaction, i,a are the thermal conductivity and diffusiv- 
ity, p are the molecular weights of the reagents, and Y are the stoichiometric coefficients. 
The subscripts zero and one refer to the mobile and solid reagent respectively, and quantities 
without the subscript refer to the solid reaction product. In the case when the solid support 
is not a reagent but a catalyst, we must write Y,=O. 

In the kinetic boundary condition F is a dimensionless function of the boundary concentra- 
tion and temperature, and the activity of the reaction surface, which varies with time, is 
defined by the multiplier k(t). The variation can be caused by a change in the phase and 
chemical composition of the surface, and its structure. Strictly speaking, the variation 
should be described by its kinetic equation reflecting the processes of formation and blocking 
of active centres of the basic reaction /2, 3/. 

The time-dependent law of decrease in activity of the reaction surface is determined by 
the source of supply of the harmful impurity poisoning the active centres of the basic reac- 
tion. It is often used in the form of an exponential or power function of time /l/. If the 
diffusion is the rate determining process for the chemisorption of the harmful impurity, unlike 
the main reaction which takes place in a mixed, diffusion-kinetic mode, we can use the approx- 
imation /t (L) - lid (L). reflecting the fact that the diffusion resistance to the transport of the 
harmful impurity increases with increasing thickness of the solid reaction product layer. We 
shall seek the law of the reaction surface in the form 

6 (1) = 28 Viz (2) 

where p is a dimensionless constant to be determined. 
We shall consequently write the law of change in activity in the form 

(3) 

where CC is a known dimensionless constant. Introducing the selfsimilar Boltzmann variable 

/4/ 5 = I/1/E 

we reduce the boundary value problem (1) for the concentration of the mobile reagent u (5) = 
C(L,Z) and dimensionless temperatures of the solid product O(E) = T (f. z)/T, and solid reagent 
e,(E) = T1 (f, d/To, to the form 

The solution of (4) for the concentration and temperature fields is 

(5) 
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The constant i3 determining the law of motion of the reaction front (2) can be found 
the solution of the following transcendental equation obtained from the kinetic condi- 
in /4/: 

In the general case when the function i(u.0) is arbitrary, the question of the exist- 
of a solution of (6) remains open. In the case of Arrhenius dependence on the tempera- 
and power dependence on the concentration, we can show that a solution exists. Indeed, 

in the case (6) will be written in the form 

where n is the order of the reaction A is the dimensionless activation energy. When fi==O 
the left hand side of (7) is zero and the right hand side is positive in accordance with solu- . 
tion (5). \?hen p increases, the left hand side increases monotonically and the right hand 
side tends to zero, since the power multiplier is bounded. For this reason the graphs depict- 
ing the dependence of the left and right hand side of (7) on p have at least one intersection. 
The non-uniqueness of the solution caused by the possible non-monotonic character of the 
right-hand side is very possible, especially in the case of an exothermic reaction. 

To obtain the depth of penetration of the reaction front into the solid reagent 6,(f), 
we shall write the relations expressing the mass balance and stoichiometry of the process as 
follows: 

da ac 
PF”= -D7i I 

dh 
*4(r) PQ f pi dl (81 

Pi & ac 
v*-~=--D~ PI I m&J(I) -E VI 

From this we can obtain an expression for x used in writing the boundary conditions 
in (l!, and the relation 

%(0 = +- P,vOP.Ppl 6 (0 (9) 

Equation (6) can serve as the basis for formulating and solving various types of inverse 
problems such as that of determining the kinetic constant a and estimating the diffusion 
and thermophysical characteristics of bodies in contact. The constant p, governing the 
rate of growth of the solid reaction product, must, of course, be determined experimentally. 

It should be noted that although a selfsimilar solution (2)‘ (5), (6), (9) of the direct 
or inverse problem of diffusion kinetics is possible only when the activity varies as given 
by (3), the expressions obtained can also be used for approximate integral estimates when 
ii(r) has a different form. 

Indeed, integrating the Stefan condition from (1) over time from zero to some averaging 
time T, we obtain 

x6(t) = i k(f)f(u ffzss, ,e iE=apt (10) 
0 

It can be shown that when the mechanism of the basic reaction is sufficiently slow (a& 1, 
and hence ge i) 

f(~~~~~~,ej~~~)=f(f,f) 

Then 
z 

-$+(r)= a(t)& f ill) 
0 

In solving the inverse problem, 
mining 

(11) can be regarded as an integral equation for deter- 
k(f) from the experimentally obtained 6 (G In solving the direct problem we can 

obtain from (11) an estimate for the value of (fl) averaged over time r in (2) and (5). 
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SCATTERING OF A LONGITUDINAL HAVE BY A SPHERICAL CAVITY WITH A 
FLUiD IN AN ELASTIC POROUS SATURATED MEDIUM* 

V-N. KBUTIN, M.G. MABKOV and A.YU. YUMATOV 

The diffraction of a plane longitudinal harmonic wave propagating in an 
unbounded elastic porous permeable fluid-saturated medium, by a spherical 
cavity with a fluid is examined. The Frenkel-Biot model /l-3/& used. 
to describe the dynamics of the porous saturated elastic medium. 

The equations describing the space of harmonic waves in a saturated porous medium have 
the form &,,U + $P,," = iob (V -U) - NAU -V [(A + N)VU + 

QVV!, b = qUW’ (&El 

dp,,U + a&.v = hb (U - W - V (QVU + RVV) 

(1) 

Here U and V are, respectively, the displacement vectors of the solid and liquid phases 
in the pores, p,, and pl, are the coefficients of dynamic density, p,* is the mass coupling 
coefficient between the liquid andsolidphases, A,N,Q,R are elastic conr~ants, q is the 
dynamic viscosity of the fluid, it is the bulk porosity, I( is the permeability, and o is the 
angular frequency; the function P(o) describes the deviation in the pores from Poiseuille 
flow /2/. 

We represent the displacement vectors of the solid and liquid phases as the sum of dis- 
placement vectros in the incident and scattered waves, i.e., 

u=zI+u, v=n+v 
A plane travelling wave with the displacements II in the solid and rr in the liquid phases 

satisfies system (1). Therefore, because of the linearity of this system, the fields u and Y 
of the scattered waves satisfy them. Introducing the spherical coordinates r, 0, p with origin 
at the centre of a spherical cavity of radius a and polar axis coincident with the direction 
of incident wave propagation, we determine the complex amplitudes of the scattered wave dis- 
placement potentials by the following relationships: 

u = V<\ +v X (Wq,, v = v B + v X (a,) (2) 

where eip is the unit vector in the equatorial direction, and the factor exp(--iwtl is omitted 

everywhere. 
Substituting (2) into (1) applying the divergence operation to the system of equations, 

we reduce it to the form 

where P,and p2 are the densities of the solid and liquid phase material in the pores. 
Performing the substitution A =A~+.\~, B = ml.\,+ m,A,, we require that .I1 and .I2 satisfy 

the Helmholtz equations 
A.\* +X2& Ai =T 0 iii 

For this it is necessary that ?&and & should be the roots of the following dispersion equa- 
tion: 

(w?22 - %?9 P - (Ywhr -I- Y&z11 - 2Y,,d E t (Y11Y** - Yd) = 0 (4) 
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